Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Am Vet Med Assoc ; 261(7): 1045-1053, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-2270116

ABSTRACT

OBJECTIVE: To provide epidemiological information on the occurrence of animal and human rabies in the US during 2021 and summaries of 2021 rabies surveillance for Canada and Mexico. PROCEDURES: State and territorial public health departments and USDA Wildlife Services provided data on animals submitted for rabies testing in 2021. Data were analyzed temporally and geographically to assess trends in domestic animal and wildlife rabies cases. RESULTS: During 2021, 54 US jurisdictions reported 3,663 rabid animals, representing an 18.2% decrease from the 4,479 cases reported in 2020. Texas (n = 456 [12.4%]), Virginia (297 [8.1%]), Pennsylvania (287 [7.8%]), North Carolina (248 [6.8%]), New York (237 [6.5%]), California (220 [6.0%]), and New Jersey (201 [5.5%]) together accounted for > 50% of all animal rabies cases reported in 2021. Of the total reported rabid animals, 3,352 (91.5%) involved wildlife, with bats (n = 1,241 [33.9%]), raccoons (1,030 [28.1%]), skunks (691 [18.9%]), and foxes (314 [8.6%]) representing the primary hosts confirmed with rabies. Rabid cats (216 [5.9%]), cattle (40 [1.1%]), and dogs (36 [1.0%]) accounted for 94% of rabies cases involving domestic animals in 2021. Five human rabies deaths were reported in 2021. CLINICAL RELEVANCE: The number of animal rabies cases reported in the US decreased significantly during 2021; this is thought to be due to factors related to the COVID-19 pandemic.


Subject(s)
COVID-19 , Cat Diseases , Cattle Diseases , Chiroptera , Dog Diseases , Rabies , Animals , Cats , Cattle , Dogs , Humans , Animals, Domestic , Animals, Wild , Cat Diseases/epidemiology , Cattle Diseases/epidemiology , COVID-19/epidemiology , COVID-19/veterinary , Dog Diseases/epidemiology , Foxes , Mephitidae , New York , Pandemics , Population Surveillance , Rabies/epidemiology , Rabies/veterinary , Raccoons , United States/epidemiology
2.
Viruses ; 14(11)2022 Nov 19.
Article in English | MEDLINE | ID: covidwho-2116094

ABSTRACT

Unlike farm animals, wild animals are not subject to continuous health surveillance. Individual projects designed to screen wildlife populations for specific pathogens are, therefore, also of great importance for human health. In this context, the possible formation of a reservoir for highly pathogenic zoonotic pathogens is a focus of research. Two of these pathogens that have received particular attention during the last years are the novel severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), due to its fast global spread and high impact to the human health, and, since its introduction into Germany, the flavivirus West Nile virus (WNV). Especially in combination with invasive vertebrate species (e.g., raccoons (Procyon lotor) and raccoon dogs (Nyctereutes procyonoides) in Germany), risk analysis must be done to enable health authorities to assess the potential for the establishment of new wild life reservoirs for pathogens. Therefore, samples were collected from raccoons and raccoon dogs and analyzed for the presence of SARS-CoV-2 and WNV infections in these populations. Molecular biological and serological data obtained imply that no SARS-CoV-2 nor WNV reservoir has been established in these two wild life species yet. Future investigations need to keep an eye on these invasive carnivore populations, especially since the close contact of these animals to humans, mainly in urban areas, would make animal-human transmission a challenge for human health.


Subject(s)
COVID-19 , West Nile virus , Animals , Humans , Raccoons , Raccoon Dogs , SARS-CoV-2 , Cross-Sectional Studies , COVID-19/epidemiology , COVID-19/veterinary , Germany/epidemiology , Animals, Wild
3.
Stud Health Technol Inform ; 296: 58-65, 2022 Aug 17.
Article in English | MEDLINE | ID: covidwho-2022597

ABSTRACT

Within the scope of the two NUM projects CODEX and RACOON we developed a preliminary technical concept for documenting clinical and radiological COVID-19 data in a collaborative approach and its preceding findings of a requirement analysis. At first, we provide an overview of NUM and its two projects CODEX and RACOON including the GECCO data set. Furthermore, we demonstrate the foundation for the increased collaboration of both projects, which was additionally supported by a survey conducted at University Hospital Frankfurt. Based on the survey results mint Lesion™, developed by Mint Medical and used at all project sites within RACOON, was selected as the "Electronic Data Capture" (EDC) system for CODEX. Moreover, to avoid duplicate entry of GECCO data into both EDC systems, an early effort was made to consider a collaborative and efficient technical approach to reduce the workload for the medical documentalists. As a first effort we present a preliminary technical concept representing the current and possible future data workflow of CODEX and RACOON. This concept includes a software component to synchronize GECCO data sets between the two EDC systems using the HL7 FHIR standard. Our first approach of a collaborative use of an EDC system and its medical documentalists could be beneficial in combination with the presented synchronization component for all participating project sites of CODEX and RACOON with regard to an overall reduced documentation workload.


Subject(s)
COVID-19 , Animals , Documentation , Humans , Raccoons , Radiography , Workflow
4.
Rofo ; 194(9): 1035-1036, 2022 09.
Article in German | MEDLINE | ID: covidwho-2016914
5.
J Am Vet Med Assoc ; 260(10): 1157-1165, 2022 05 05.
Article in English | MEDLINE | ID: covidwho-1834225

ABSTRACT

OBJECTIVE: To provide epidemiological information on animal and human cases of rabies in the US during 2020 and summaries of 2020 rabies surveillance for Canada and Mexico. ANIMALS: All animals submitted for laboratory diagnosis of rabies in the US during 2020. PROCEDURES: State and territorial public health departments and USDA Wildlife Services provided 2020 rabies surveillance data. Data were analyzed temporally and geographically to assess trends in domestic and wildlife rabies cases. RESULTS: During 2020, 54 jurisdictions submitted 87,895 animal samples for rabies testing, of which 85,483 (97.3%) had a conclusive (positive or negative) test result. Of these, 4,479 (5.2%) tested positive for rabies, representing a 4.5% decrease from the 4,690 cases reported in 2019. Texas (n = 580 [12.9%]), Pennsylvania (371 [8.3%]), Virginia (351 [7.8%]), New York (346 [7.7%]), North Carolina (301 [6.7%]), New Jersey (257 [5.7%]), Maryland (256 [5.7%]), and California (248 [5.5%]) together accounted for > 60% of all animal rabies cases reported in 2020. Of the total reported rabid animals, 4,090 (91.3%) involved wildlife, with raccoons (n = 1,403 [31.3%]), bats (1,400 [31.3%]), skunks (846 [18.9%]), and foxes (338 [7.5%]) representing the primary hosts confirmed with rabies. Rabid cats (288 [6.4%]), cattle (43 [1.0%]), and dogs (37 [0.8%]) accounted for 95% of rabies cases involving domestic animals in 2020. No human rabies cases were reported in 2020. CONCLUSIONS AND CLINICAL RELEVANCE: For the first time since 2006, the number of samples submitted for rabies testing in the US was < 90,000; this is thought to be due to factors related to the COVID-19 pandemic, as similar decreases in sample submission were also reported by Canada and Mexico.


Subject(s)
COVID-19 , Cat Diseases , Cattle Diseases , Chiroptera , Dog Diseases , Rabies , Cats , Dogs , Animals , United States , Cattle , Humans , Rabies/epidemiology , Rabies/veterinary , Animals, Domestic , Pandemics , Cat Diseases/epidemiology , Dog Diseases/epidemiology , Cattle Diseases/epidemiology , Equidae , Population Surveillance , COVID-19/veterinary , Raccoons , Mephitidae , Animals, Wild , Foxes , New York
6.
J Anim Ecol ; 91(2): 367-380, 2022 02.
Article in English | MEDLINE | ID: covidwho-1511256

ABSTRACT

Studying species interactions and niche segregation under human pressure provides important insights into species adaptation, community functioning and ecosystem stability. Due to their high plasticity in behaviour and diet, urban mesocarnivores are ideal species for studying community assembly in novel communities. We analysed the spatial and temporal species interactions of an urban mesocarnivore community composed of the red fox Vulpes vulpes and the marten Martes sp. as native species, the raccoon Procyon lotor as invasive species, and the cat Felis catus as a domestic species in combination with human disturbance modulated by the SARS-CoV-2 lockdown effect that happened while the study was conducted. We analysed camera trap data and applied a joint species distribution model to understand not only the environmental variables influencing the detection of mesocarnivores and their use intensity of environmental features but also the species' co-occurrences while accounting for environmental variables. We then assessed whether they displayed temporal niche partitioning based on activity analyses, and finally analysed at a smaller temporal scale the time of delay after the detection of another focal species. We found that species were more often detected and displayed a higher use intensity in gardens during the SARS-CoV-2 lockdown period, while showing a shorter temporal delay during the same period, meaning a high human-induced spatiotemporal overlap. All three wild species spatially co-occurred within the urban area, with a positive response of raccoons to cats in detection and use intensity, whereas foxes showed a negative trend towards cats. When assessing the temporal partitioning, we found that all wild species showed overlapping nocturnal activities. All species displayed temporal segregation based on temporal delay. According to the temporal delay analyses, cats were the species avoided the most by all wild species. To conclude, we found that although the wild species were positively associated in space, the avoidance occurred at a smaller temporal scale, and human pressure in addition led to high spatiotemporal overlap. Our study sheds light to the complex patterns underlying the interactions in a mesocarnivore community both spatially and temporally, and the exacerbated effect of human pressure on community dynamics.


Subject(s)
Cats , Foxes , Mustelidae , Raccoons , Animals , Behavior, Animal , COVID-19 , Cities , Communicable Disease Control , Ecosystem , Humans , Spatio-Temporal Analysis
7.
Viruses ; 13(10)2021 10 07.
Article in English | MEDLINE | ID: covidwho-1463837

ABSTRACT

In summer 2020, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was detected on mink farms in Utah. An interagency One Health response was initiated to assess the extent of the outbreak and included sampling animals from on or near affected mink farms and testing them for SARS-CoV-2 and non-SARS coronaviruses. Among the 365 animals sampled, including domestic cats, mink, rodents, raccoons, and skunks, 261 (72%) of the animals harbored at least one coronavirus. Among the samples that could be further characterized, 127 alphacoronaviruses and 88 betacoronaviruses (including 74 detections of SARS-CoV-2 in mink) were identified. Moreover, at least 10% (n = 27) of the coronavirus-positive animals were found to be co-infected with more than one coronavirus. Our findings indicate an unexpectedly high prevalence of coronavirus among the domestic and wild free-roaming animals tested on mink farms. These results raise the possibility that mink farms could be potential hot spots for future trans-species viral spillover and the emergence of new pandemic coronaviruses.


Subject(s)
Alphacoronavirus/isolation & purification , COVID-19/epidemiology , COVID-19/veterinary , SARS-CoV-2/isolation & purification , Alphacoronavirus/classification , Alphacoronavirus/genetics , Animals , Animals, Domestic/virology , Animals, Wild/virology , Cats , Disease Hotspot , Female , Male , Mephitidae/virology , Mice , Mink/virology , Raccoons/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , Utah/epidemiology
8.
J Virol ; 94(15)2020 07 16.
Article in English | MEDLINE | ID: covidwho-661225

ABSTRACT

The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulted in a pandemic. Here, we used X-ray structures of human ACE2 bound to the receptor-binding domain (RBD) of the spike protein (S) from SARS-CoV-2 to predict its binding to ACE2 proteins from different animals, including pets, farm animals, and putative intermediate hosts of SARS-CoV-2. Comparing the interaction sites of ACE2 proteins known to serve or not serve as receptors allows the definition of residues important for binding. From the 20 amino acids in ACE2 that contact S, up to 7 can be replaced and ACE2 can still function as the SARS-CoV-2 receptor. These variable amino acids are clustered at certain positions, mostly at the periphery of the binding site, while changes of the invariable residues prevent S binding or infection of the respective animal. Some ACE2 proteins even tolerate the loss or acquisition of N-glycosylation sites located near the S interface. Of note, pigs and dogs, which are not infected or are not effectively infected and have only a few changes in the binding site, exhibit relatively low levels of ACE2 in the respiratory tract. Comparison of the RBD of S of SARS-CoV-2 with that from bat coronavirus strain RaTG13 (Bat-CoV-RaTG13) and pangolin coronavirus (Pangolin-CoV) strain hCoV-19/pangolin/Guangdong/1/2019 revealed that the latter contains only one substitution, whereas Bat-CoV-RaTG13 exhibits five. However, ACE2 of pangolin exhibits seven changes relative to human ACE2, and a similar number of substitutions is present in ACE2 of bats, raccoon dogs, and civets, suggesting that SARS-CoV-2 may not be especially adapted to ACE2 of any of its putative intermediate hosts. These analyses provide new insight into the receptor usage and animal source/origin of SARS-CoV-2.IMPORTANCE SARS-CoV-2 is threatening people worldwide, and there are no drugs or vaccines available to mitigate its spread. The origin of the virus is still unclear, and whether pets and livestock can be infected and transmit SARS-CoV-2 are important and unknown scientific questions. Effective binding to the host receptor ACE2 is the first prerequisite for infection of cells and determines the host range. Our analysis provides a framework for the prediction of potential hosts of SARS-CoV-2. We found that ACE2 from species known to support SARS-CoV-2 infection tolerate many amino acid changes, indicating that the species barrier might be low. Exceptions are dogs and especially pigs, which revealed relatively low ACE2 expression levels in the respiratory tract. Monitoring of animals is necessary to prevent the generation of a new coronavirus reservoir. Finally, our analysis also showed that SARS-CoV-2 may not be specifically adapted to any of its putative intermediate hosts.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/virology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus/metabolism , Virus Attachment , Angiotensin-Converting Enzyme 2 , Animals , Animals, Domestic , Betacoronavirus/metabolism , COVID-19 , Chiroptera/virology , Coronavirus Infections/metabolism , Dogs , Glycosylation , Host-Pathogen Interactions , Humans , Models, Animal , Pandemics , Pets , Pneumonia, Viral/metabolism , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Raccoons/virology , SARS-CoV-2 , Sequence Alignment , Sequence Analysis, Protein , Swine , Viverridae/virology
SELECTION OF CITATIONS
SEARCH DETAIL